Chapter 11
Object-Oriented Programming:

c++ HARESHRABEGH, 9/e



In this chapter you'll learn:

= What inheritance is and how it promotes software reuse.

= The notions of base classes and derived classes and the relationships between them.
m The protected member access specifier.

m The use of constructors and destructors in inheritance hierarchies.

= The order in which constructors and destructors are called in inheritance hierarchies.
m The differences between pubTic, protected and private inheritance.

= To use inheritance to customize existing software.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.1 Introduction
11.2 Base Classes and Derived Classes

1.3 Relationship between Base and Derived Classes
[1.3.1 Creating and Using a CommissionEmployee Class
I1.3.2 Creating a BasePTusCommission-EmpTloyee Class Without Using Inheritance

[1.3.3 Creating a CommissionEmployee—BasePTusCommissionEmployee Inheritance
Hierarchy

I1.3.4 CommissionEmployee—BasePlusCommissionEmployee Inheritance Hierarchy
Using protected Data

[1.3.5 CommissionEmployee—BasePlusCommissionEmployee Inheritance Hierarchy
Using private Data

1.4 Constructors and Destructors in Derived Classes
1.5 public, protected and private Inheritance
1.6 Software Engineering with Inheritance

1.7 Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.1 Introduction

Inheritance Is a form of software reuse in which you create
a class that absorbs an existing class’s data and behaviors
and enhances them with new capabilities.

You can designate that the new class should inherit the
members of an existing class.

This existing class is called the base class, and the new class
IS referred to as the derived class.

A derived class represents a /more specialized group of
objects.

C++ offers public, protected and private
Inheritance.

With pub 117 ¢ inheritance, every object of a derived class is
also an object of that derived class’s base class.

However, base-class objects are not objects of their derived
classes.



Introduction (cont.)

With object-oriented programming, you focus
on the commonalities among objects in the
system rather than on the special cases.

We distinguish between the /s-arelationship
and the Aas-a relationship.

The /s-arelationship represents inheritance.

In an /s-a relationship, an object of a derived
class also can be treated as an object of its base
class.

Bv contrast. the Aaszaretationship represents



11.2 Base Classes and Derived Classes

Figure 11.1 lists several simple examples of
base classes and derived classes.

— Base classes tend to be more general and derived
classes tend to be more specific.

Because every derived-class object /s anobject
of its base class, and one base class can have
many derived classes, the set of objects
represented by a base class typically Is /arger
than the set of objects represented by any of Its
derived classes.

Inheritance relatienships formiclass

IA:AI’AI’AIA:I\A



11.2 Base Classes and Derived Classes
(cont.)

 Anbase class exists in a hierarchical relationship with its
derived classes.

* Although classes can exist independently, once they’re
employed in inheritance relationships, they become
affiliated with other classes.

* Aclass becomes either a base class—supplying members to
other classes, a derived class—inheriting its members from
other classes, or both.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, Mortgageloan
Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Fig. 11.1 | Inheritance examples.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.2 Base Classes and Derived Classes
(cont.)

CommunityMember Class Hierarchy

* Let’s develop a simple inheritance hierarchy with five levels
(represented by the UML class diagram in Fig. 11.2).

« A university community has thousands of
CommunityMembers.

« Employees are either Faculty or Staff.
 Faculty are either Administratorsor Teachers.
« Some Administrators, however, are also Teachers.

« We’ve used multiple inheritance to form class
AdministratorTeacher.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Single
inheritance

Single
inheritance

Single
inheritance

Multiple
inheritance

Fig. 11.2 | Inheritance hierarchy for university CommunityMembers.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.2 Base Classes and Derived Classes
(cont.)

* With single inheritance, a class is derived from
one base class.

« With multiple inheritance, a derived class
Inherits simultaneously from fwo or more

(possibly unrelated) base classes.

— We discuss multiple inheritance in Chapter 23, Other
Topics.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.2 Base Classes and Derived Classes
(cont.)

« Each arrow in the hierarchy (Fig. 11.2) represents an /s-a
relationship.

— As we follow the arrows in this class hierarchy, we can state “an
Employee /saCommunityMember” and “a Teacher /sa
Faculty member.”

— CommunityMember is the direct base class of Emp loyee,
Student and Alumnus.

— CommunityMember is an indirect base class of all the other
classes in the diagram.
- Starting from the bottom of the diagram, you can follow the
arrows and apply the /s-arelationship to the topmost base
class.

— AnAdministratorTeacher /sanAdministrator, /sa
Faculty member, /sanEmployee and /sa
CommunityMember.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.2 Base Classes and Derived Classes
(cont.)

Shape Class Hierarchy
 Consider the Shape inheritance hierarchy in Fig. 11.3.

« Begins with base class Shape.

« Classes TwoD1mensionalShape and
ThreeDimensionalShape derive from base class
Shape—Shapes are either TwoD1mensionalShapes or
Three-DimensionalShapes.

« The third level of this hierarchy contains some more specific
types of TwoDimensionalShapes and
ThreeDimensionalShapes.

« AsinFig. 11.2, we can follow the arrows from the bottom of
the diagram to the topmost base class in this class hierarchy to
Identify several /s-arelationships.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Fig. 11.3 | Inheritance hierarchy for Shapes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



11.3 Relationship between Base and
Derived Classes

* In this section, we use an inheritance hierarchy
containing types of employees in a company’s
payroll application to discuss the relationship
between a base class and a derived class.

« Commission employees (who will be
represented as objects of a base class) are paid
a percentage of their sales, while base-salaried
commission employees (who will be
represented as objects of a derived class)
receive a base salary-plus.a.percentage of their

ghts Res
f\ﬂlf\f\



