

Chapter 11

Object-Oriented Programming:

Inheritance C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.1 Introduction
• Inheritance is a form of software reuse in which you create

a class that absorbs an existing class’s data and behaviors
and enhances them with new capabilities.

• You can designate that the new class should inherit the
members of an existing class.

• This existing class is called the base class, and the new class
is referred to as the derived class.

• A derived class represents a more specialized group of
objects.

• C++ offers public, protected and private
inheritance.

• With public inheritance, every object of a derived class is
also an object of that derived class’s base class.

• However, base-class objects are not objects of their derived
classes.

 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.1 Introduction (cont.)

• With object-oriented programming, you focus

on the commonalities among objects in the

system rather than on the special cases.

• We distinguish between the is-a relationship

and the has-a relationship.

• The is-a relationship represents inheritance.

• In an is-a relationship, an object of a derived

class also can be treated as an object of its base

class.

• By contrast, the has-a relationship represents

composition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

• Figure 11.1 lists several simple examples of

base classes and derived classes.

– Base classes tend to be more general and derived

classes tend to be more specific.

• Because every derived-class object is an object

of its base class, and one base class can have

many derived classes, the set of objects

represented by a base class typically is larger

than the set of objects represented by any of its

derived classes.

• Inheritance relationships form class

hierarchies.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

(cont.)

• A base class exists in a hierarchical relationship with its
derived classes.

• Although classes can exist independently, once they’re
employed in inheritance relationships, they become
affiliated with other classes.

• A class becomes either a base class—supplying members to
other classes, a derived class—inheriting its members from
other classes, or both.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

(cont.)

CommunityMember Class Hierarchy

• Let’s develop a simple inheritance hierarchy with five levels
(represented by the UML class diagram in Fig. 11.2).

• A university community has thousands of
CommunityMembers.

• Employees are either Faculty or Staff.

• Faculty are either Administrators or Teachers.

• Some Administrators, however, are also Teachers.

• We’ve used multiple inheritance to form class
AdministratorTeacher.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

(cont.)

• With single inheritance, a class is derived from

one base class.

• With multiple inheritance, a derived class

inherits simultaneously from two or more

(possibly unrelated) base classes.
– We discuss multiple inheritance in Chapter 23, Other

Topics.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

(cont.)

• Each arrow in the hierarchy (Fig. 11.2) represents an is-a
relationship.
– As we follow the arrows in this class hierarchy, we can state “an
Employee is a CommunityMember” and “a Teacher is a
Faculty member.”

– CommunityMember is the direct base class of Employee,
Student and Alumnus.

– CommunityMember is an indirect base class of all the other
classes in the diagram.

• Starting from the bottom of the diagram, you can follow the
arrows and apply the is-a relationship to the topmost base
class.
– An AdministratorTeacher is an Administrator, is a
Faculty member, is an Employee and is a
CommunityMember.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.2 Base Classes and Derived Classes

(cont.)

Shape Class Hierarchy

• Consider the Shape inheritance hierarchy in Fig. 11.3.

• Begins with base class Shape.

• Classes TwoDimensionalShape and
ThreeDimensionalShape derive from base class
Shape—Shapes are either TwoDimensionalShapes or
Three-DimensionalShapes.

• The third level of this hierarchy contains some more specific
types of TwoDimensionalShapes and
ThreeDimensionalShapes.

• As in Fig. 11.2, we can follow the arrows from the bottom of
the diagram to the topmost base class in this class hierarchy to
identify several is-a relationships.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

11.3 Relationship between Base and

Derived Classes

• In this section, we use an inheritance hierarchy

containing types of employees in a company’s

payroll application to discuss the relationship

between a base class and a derived class.

• Commission employees (who will be

represented as objects of a base class) are paid

a percentage of their sales, while base-salaried

commission employees (who will be

represented as objects of a derived class)

receive a base salary plus a percentage of their

sales.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

